
T H E  S P E C T R U M  OF S M A L L  P E R T U R B A T I O N S  

C O U E T T E - P O I S E U I L L E  F L O W  

A.  M. S a g a l a k o v  

IN PLANE 

The spec t rum of small  per turbat ions  ~of plane Couet te-Poiseui l le  flow is studied. The p e r -  
turbations are  classif ied according to their  behavior at large wave numbers .  The changes 
in the spec t rum are  t raced  as the t ransi t ion is made f rom Poiseuille to Couette flow at fixed 
Reynolds number.  The behavior of the per turbat ions  is considered as a function of the 
Reynolds number.  

1. We consider  the s tat ionary flow of a viscous incompress ible  fluid between paral le l  plates  due to a 
p r e s s u r e  gradient  and the relat ive motion of the plates.  The problem of hydrodynamical  stabili ty can be r e -  
duced to the analysis  of the spect rum of the eigenvalues of the Or r -Sommer fe ld  equation 

~ I v  _ 2a~q)zz + a4cp = ia_~ [ (u  - -  c) ((pII _ a~qD) _ u"(p] (1.1) 

with boundary conditions 

(:hi) ---- ~' (:hi) = 0 (1.2) 

Here ~(y) is the amplitude of the per turbat ion s t ream function, a is the wave number ,R is the Reynolds 
number,  u is the velocity profile,  and c = X+ iY is the complex phase velocity of the perturbation,  the e igen-  
value of the problem.  Negative values of Y cor respond to damping of the perturbation,  and positive values 
to increase  in the per turbat ions .  As the unit of length we take the half-width of the channel, and as the unit 
of velocity we take the sum of the s t ream velocity on the axis and the velocity of the upper plate at y = 1. 
The express ion for u has the form 

u = (t --  A) (1 - -  y2) + A g  (1.3) 

In studying the eigenvalue problem (1.1), (1.2) most  frequently the discussion is r e s t r i c t ed  to neutral  p e r -  
turbations.  But in a number of problems,  for example, in the development of nonlinear theory,  we have to 
study the whole spec t rum of small  per turbat ions .  

The whole spect rum of small  per turbat ions  has not previously  been studied for a symmet r i c  prof i les .  
Neutral per turbat ions in the type of flow under considerat ion were studied by Potter  [1] and Hains [2], who 
obtained resul ts  which agreed Well. 

2. For  given A, R, ~ there  is a countable number of eigenvalues c n. For  large and smal l  ~ we can 
obtain asymptot ic  expressions for the Cn. If we use the resu l t s  obtained in [3] it is easy to find asymptot ic  
expressions for the eigenvalues for  small  ~. They have the form 

Yn = -- 5n (aR) -I (2.1) 
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X ~ - = ( l - - A ) [ ~ / 3 - - 5 ( 2 8 n ) - ~ l  (,,= i.3,5 . . . .  ) 
X .  = ( 1 .  A )  [~/3 + 5 (68~)- '1 (n = 2, 4, 6 . . . .  ) 

5 n = l / 4 ~ ( n ~ - l )  ~ (n=i ,  3,5 . . . .  ) 

f 

7,o 9 
2 q 

(2.2) 

For  n = 2, 4, 6 . . . . .  the value of 5n is found f rom the equation 

t g  = 

The eigenvalues, defined by (2.2) a re  numbered in order  of increas ing [Ynl. For  a rb i t r a ry  ~, spect ra l  
enumerat ion is in accordance  with the order  of the Cn for small  ~. The asymptot ic  express ion for Yn for 
large wave numbers  can be wri t ten as 

Y~ = - -  ~ / R  ( a ~ )  ( 2 . 3 )  

If n >> 1, when R is bounded the eigenvalues are  close to the corresponding values in a fluid at res t .  

To determine the c n in the interval between the asymptotic  values,  we use the numer ica l  method of 
solving the eigenvalue problem for ordinary  differential  equations with a small  pa rame te r  in the leading 
derivative developed in [4-6]. The numerical  calculations were ca r r i ed  out on a B]~SM-6 computer ,  The 
eigenvalues were determined to a given accuracy  (three significant figures).  Control calculations were made 
for  a Poiseuille flow and gave good agreement  with the numerical  resul ts  obtained in [7]. 

3. We t race  the changes in the spect rum of small  perturbat ions as A increases  f rom zero for  fixed 
R = 105. When A = 0 (Poiseuille flow), the numerical  calculations give a spectra l  pat tern which is completely 
analogous to that obtained in [6] for R = 15,000. Its charac te r i s t i c  feature is the p rec i se  separat ion of the 
per turbat ions ,as  the wave number increases , into two c lasses :  boundary layer  per turbat ions which are  lo- 
calized at the channel wall with phase velocity tending to zero,  and internal per turbat ions whichare  localized 
on the channel axis with phase velocity tending to the maximum flow velocity.  

The boundary layer  per turbat ions are  those with n = 1, 2, 5, 8, . . . ,  while the internal per turbat ions  
a re  those with n = 3, 4, 6, 7, . . . .  When the plates move the typical feature of the subdivision of the p e r t u r -  
bations is p r e se rved  in accordance with their  behavior at large wave numbers .  Among the boundary layer  
perturbat ions we distinguish upper and lower per turbat ions  which a re  localized for  large ~ at the upper and 
lower plates respect ively .  

Figures  1 and 2 show the behavior of Cn(~) for the f i rs t  eight spect ra l  numbers  when A = 0.15. In this 
case the flow is unstable and the f i rs t  eigenvalue leads to instability as in Poiseuille flow. Then the c o r -  
responding maximum of YI(e~) is displaced in the direct ion of small  ~, and the instability is connected with 
the p resence  of a cr i t ical  point on the lower plate.  The cr i t ical  point on the upper plate vanishes at much 
smal le r  values of A. The form of the subdivision of both the boundary layer  and the internal per turbat ions  
remains  of Poiseuille charac te r  through n = 5. However, perturbat ions corresponding to l a rge r  spectra l  
numbers  are  distr ibuted differently, viz. ,  perturbat ions with numbers 6, 7 become lower boundary layer  
per turbat ions ,  while that with n = 8 becomes an internal perturbation.  

In what follows we consider  a finite number of spec t ra lnumbers  beginning with n = 1, and so it is s ig-  
nificant to note the preponderance of the number of lower boundary layer  perturbat ions over upper p e r t u r -  
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bations and the general  propenderance of boundary layer  per turbat ions over in te rna lpe r tu rba t ions , a s  dist inct  
f rom the case of Poiseuille flow. 

The behavior of X n and Yn as functions of ~ is given by the asymptot ic  express ions  (2.1) and (2,2) for 
~ 10 -4, andby the asymptot ic  express ion (2.3) for a ~ 104. Loss of stabili ty of the velocity profile as A in- 

c reases  f rom zero leads to a change in the o rder  in which the var ious  eigenval.ues belonging to different 
spect ra l  numbers  merge.  If c3(a) , c4(~) behave in the same way as in the Poiseuille case,  i.e., they merge  
for small  ~, in other respec t s  there  are  significant changes: the merging of boundary layer  eigenvalues in 
the region ~ >> 1, which occurs  for A =0, is not observed.  The corresponding functions Xn(O~), Yn(~) a re  
markedly different f rom each other a lmost  up to the asymptotic  region.  On the other  hand, for small  ~ the 
eigenvalues c5(c~ ) and c7(~) merge.  The complex intersect ion of Xn(O~ ) and Yn(~) and the local maxima of 
Y2(~) and Ys,7(~) for ~ N 1 ,  a t t rac t  attention. 

Near the maximum of Y3,4(~) the corresponding eigenvalues separate  at a low value and then later  
merge (this is not shown in Fig. 2). 

Subsequent increase  in A leads to a complex change in the spect rum.  Figures 3 and 4 (curves 1-7) 
show Cn(a) for tile f i r s t  seven spectra l  numbers  when A=0o3. The per turbat ions  are  divided into 
boundary layer  and internal per turbat ions  as follows: numbers  1, 4, 7, . . .  cor respond  to lower boundary 
layer  per turbat ions ,  numbers  2, 6, . . .  to upper boundary layer  per turbat ions,  numbers  3, 5, . . .  to internal 
per turbat ions .  As A increases  the separat ion of boundary layer  per turbat ions  into lower and upper is 
smoothed out. This is due to the reduction in the number of internal per turbat ions  and due to changes in the 
distr ibution of the boundary layer  per turbat ions.  The eigenvalues c2(a ) and c6(~ ) merge  at approximately  
the same c~ as when A = 0.15. 

The bifurcation of Yn(~) becomes more marked when a >> 1, and this is c lear ly  i l lustrated by Yi(~) and 
Y2,6(o0. The most complex behavior of Cn(O~ ) occurs  for ~ = 10-3-10 -2, where the asymptot ic  express ions  
(2.1) and (2.2) essent ial ly  cannot be used, In the range of "dangerous" wave numbers  there is a c h a r a c t e r -  
istic maximum of Yl(c~) and weaker  maxima for  Y2,6(o~) and Y?(~). 

When A = 2/3 the velocity profile (1.3) loses its charac te r i s t i c  maximum inside the channel. Then the 
internal per turbat ions coincide with the upper boundary layer  per turbat ions .  Thus, for A >-2/3 the spect rum 
of small  per turbat ions only contains boundary layer  per turbat ions.  The preponderance of the number of 
lower boundary layer  per turbat ions  over upper boundary layer  per turbat ions  is also lost. 

Figure 5 shows the behavior of Yn(~) for the f i rs t  four spectra l  numbers  when A = 0.75. The sepa ra -  
tion of the boundary layer  per turbat ion for this value of A into upper and lower occurs  as follows: p e r t u r -  
bations with n = 1, 4, 5, 8 . . . .  a re  lower boundary layer  per turbat ions,  those with n = 2, 3, 6, 7, . . .  a re  upper 
boundary layer  per turbat ions.  

When ~ is in the range 10-4-10 -2 the functions Xn(~) and Yn(CZ) intersect ,  but the var ious  eigenvalues 
do not merge.  (When c~ = 10 -2 the eigenvalues are  in the o rder  of increasing ]Ynl as follows: 1, 3, 2, 7, 5, 
6, 4, 8 . . . .  but as ~ changes this order  is destroyed.) 

In the above interval Yl(o~) has a weak local maximum. 

Similar maxima are t raced  in Figs.  2 and 4, but in these cases  they are  fo re runners  of the merging 
of the various eigenvalues at the points of discontinuity of Cn(O~ ). The Yn no longer have local maxima in 
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the region of dangerous a .  In this case  the i r  behavior  r eca l l s  that of 
the in ternal  per tu rba t ions  in the cases  discussed.  We note that,  as d i s -  
t inct  f rom Couette flow (cf [8]), the f i r s t  eigenvalue is not eve rywhere  
the most  dangerous here .  

To t r a c e  the nature of the t rans i t ion  to Couette flow numer ica l  
computat ions were  made for  values  of A close to unity. The var ious  
cn(a) have typical  Couette discontinuit ies  for  sma l l  a beyond the a s y m p -  
totic region,  which a r e  connected with the occu r r ence  of osc i l l a to ry  
pe r tu rba t ions  when A = 1. In the Y plane the separa te  e igenvalues  c o r -  
responding to the upper  and lower boundary l ayer  pe r tu rba t ions ,  which 

merge  for  A = 1, approach  each other .  The spec t rum of smal l  pe r tu rba t ions  of Covette flow has been studied 
by a number  of au thors .  The case of la rge  Reynolds numbers  was studied in detail  in [8]. 

4. We cons ider  the behavior  of the pe r tu rba t ions  as a function of the Reynolds number .  It is easy  to 
see that  Eq. (1.1) is approx imated  well  by the following equation when ~2 << 1: 

q~IV .~iO~B[(U__C)~II ~,~] (ic:t:: Al>~e,,) (4.1) 

F r o m  this  equation we see that  the eigenvalues depend only on one p a r a m e t e r  dR. Thus,  knowing the 
numer ica l  r e su l t s  for  one R we can a p r i o r i  draw conclusions about the behavior  of Cn(a) for  o ther  values  
of R when a2 << 1 which is a wider  region than that  in which (2.1) and (2.2) a re  valid.  

The range of a in which the above considera t ions  hold is v e r y  in teres t ing  since a significant r e o r g a -  
nization of the s p e c t r u m  by compar i son  with the asympto t ic  behavior  takes  place .  

This can be used in numer ica l  calculat ions at va r ious  Reynolds numbers .  As an example ,  Fig. 4 shows 
Yl(a) for  1~ = 10 6 (curve 8) and Yl(a) for  R = 10 ~, which i l lus t ra te  the val idi ty of the approximat ion  of the O r r -  
Sommerfe ld  equation by (4.1) when ~2 << 1. 

In the prev ious  sect ion we drew attention to the exis tence of local  max ima  for  some of the Yn(a).  The 
g r e a t e s t  in te res t  l ies in the behavior  of these  max ima  as  R inc reases  since their  exis tence  can be linked 
to an additional instabi l i ty.  Numer ica l  calculat ions in which both "continuous motion" [4] and the a p p r o x i m a -  
tion cons idered  he re  a r e  studied show that  the instabi l i ty  of the Couet te -Poiseu i l le  flow is only connected 
with the f i r s t  eigenvalue.  

The value of A which comple te ly  s tabi l izes  the flow was found using continuous motion f r o m  the m a x -  
imum of Yl(~). It was  A = 0.26, which co r r e sponds  to the r e su l t s  of [1, 2]~ Fig. 4 (curve 9) shows Yl(~) for  
A = 0.23, R = 10 ~. For  these p a r a m e t e r s  the flow is not yet  unstable.  

The author wishes  to thank Mo A. Gol 'dsht ik  for  his attention to the paper ,  V. A. Sapozhnikov for  useful 
d i scuss ions ,  and V. N. Shtern for  his g rea t  a s s i s t ance  and help with the p a p e r  and for  useful  d i scuss ions .  
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