THE SPECTRUM OF SMALL PERTURBATIONS IN PLANE
COUETTE-POISEUILLE FLOW

A. M. Sagalakov

The spectrum of small perturbations of plane Couette-Poiseuille flow is studied. The per-
turbations are classified according to their behavior at large wave numbers. The changes
in the spectrum are traced as the transition is made from Poiseuille to Couette flow atfixed
Reynolds number. The behavior of the perturbations is considered as a function.of the
Reynolds number.

1. We consider the stationary flow of a viscous incompressible fluid between parallel plates due to a
pressure gradient and the relative motion of the plates. The problem of hydrodynamical stability can be re-
duced to the analysis of the spectrum of the eigenvalues of the Orr-Sommerfeld equation

1V — 2a2Q™ 4 ot = iaR [(u — ¢) (' — a?p) — u"g] (L.1)

with boundary conditions

(1) =¢ (1) =0 (1.2)

Here ¢(y) is the amplitude of the perturbation stream function, « is the wave number,R isthe Reynolds
number, u is the velocity profile, and ¢ = X+iY is the complex phase velocity of the perturbation, the eigen-
value of the problem. Negative values of Y correspond to damping of the perturbation, and positive values
to increase in the perturbations. As the unit of length we take the half-width of the channel, and as the unit
of velocity we take the sum of the stream velocity on the axis and the velocity of the upper plate at y = 1.
The expression for u has the form

u=(1—4)(1 —3) + 4y (1.3)

In studying the eigenvalue problem (1.1), (1.2) most frequently the discussion is restricted to neutral per-
turbations. But in a number of problems, for example, in the development of nonlinear theory, we have to
study the whole spectrum of small perturbations.

The whole spectrum of small perturbations has not previously been studied for asyrﬁmetric profiles.
Neutral perturbations in the type of flow under consideration were studied by Potter [1] and Hains [2], who
obtained results which agreed well.

2. For given A, R, « there is a countable number of eigenvalues c,. For large and small o we can
obtain asymptotic expressions for the cn. If we use the results obtained in [3] it is easy to find asymptotic
expressions for the eigenvalues for small . They have the form

Y, = — 8, (aR)? @.1)
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Xp=(1— A)[¥;—5(28.)"] (n=1.3,5..)
Xo=(1— A4)[%;+ 5(68,)") (n=2,46,..)" (2.2)
bp="Ym*(n-+ 1  (n=1,35..)

For n=2, 4, 6, ..., the value of §p is found from the equation

tg V& =V5

The eigenvalues, defined by (2.2) are numbered in order of increasing |[Yp|. For arbitrary o, spectral
enumeration is in accordance with the order of the ¢p for smail @. The asymptotic expression for Yy, for
large wave numbers can be written as

Ypo=—ao/R (n <L) 2.3)
I n> 1, when R is bounded the eigenvalues are close to the corresponding values in a fluid at rest.

To determine the ¢, in the interval between the asymptotic values, we use the numerical method of
solving the eigenvalue problem for ordinary differential equations with a small parameter in the leading
derivative developed in [4-6]. The numerical calculations were carried out on a BESM-6 computer. The
eigenvalues were determined to a given accuracy (three significant figures). Control calculations were made
for a Poiseuille flow and gave good agreement with the numerical results obtained in [7].

3. We trace the changes in the spectrum of small perturbations as A increases from zero for fixed
R =10°, When A =0 (Poiseuille flow), the numerical calculations give a spectral pattern which is completely
analogous to that obtained in [6] for R =15,000. Its characteristic feature is the precise separation of the
perturbations,as the wave number increases,into two classes: boundary layer perturbations which are lo-
calized at the channel wall with phase velocity tending to zero, and internal perturbations whichare localized
on the channel axis with phase velocity tending to the maximum flow velocity.

The boundary layer perturbations are those with n=1, 2, 5, 8, ..., while the internal perturbations
are those with n=3, 4, 6, 7, .... When the plates move the typical feature of the subdivision of the pertur-
bations is preserved in accordance with their behavior at large wave numbers. Among the boundary layer
perturbations we distinguish upper and lower perturbations which are localized for large « at the upper and
lower plates respectively.

Figures 1 and 2 show the behavior of cp(w) for the first eight spectral numbers when A =0,15. In this
case the flow is unstable and the first eigenvalue leads to instability as in Poiseuille flow. Then the cor-
responding maximum of Y («) is displaced in the direction of small o, and the instability is connected with
the presence of a critical point on the lower plate. The critical point on the upper plate vanishes at much
smaller values of A, The form of the subdivision of both the boundary layer and the internal perturbations
remains of Poiseuille character through n=5. However, perturbations corresponding to larger spectral
numbers are distributed differently, viz., perturbations with numbers 6, 7 become lower boundary layer
perturbations, while that with n =8 becomes an internal perturbation.

In what follows we consider a finite number of spectral numbers beginning with n= 1, and so it is sig-
nificant to note the preponderance of the number of lower boundary layer perturbations over upper pertur-
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bations and the general propenderance of boundary layer perturbations over internal perturbations,as distinct
from the case of Poiseuille flow,

The behavior of Xy, and Y, as functions of o is given by the asymptotic expressions (2.1) and (2.2) for
a~10~*, and by the asymptotic expression (2.3) for o ~ 10, Loss of stability of the velocity profile as A in-
creases from zero leads to a change in the order in which the various eigenvalues belonging to different
spectral numbers merge. K cz(a), cy(e) behave in the same way as in the Poiseuille case, i.e., they merge
for small ¢, in other respects there are significant changes: the merging of boundary layer eigenvalues in
the region @ >>1, which occurs for A =0, is not observed. The corresponding functions Xp(@), Yp(@) are
markedly different from each other almost up to the asymptotic region. On the other hand, for small « the
eigenvalues c;(c) and c¢(a) merge. The complex intersection of X, (¢) and Yn(c/) and the local maxima of
Y,(@) and Y5,7((y) for o ~1, attract attention.

Near the maximum of Y3,4(oz) the corresponding eigenvalues separate at a low value and then later
merge (this is not shown in Fig. 2).

Subsequent increase in A leads to a complex change in the spectrum. Figures 3 and 4 (curves 1-7)
show c,(a) for the first seven spectral numbers when A=0.3. The perturbations are divided into
boundary layer and internal perturbations as follows: numbers 1, 4, 7, ... correspond to lower boundary
layer perturbations, numbers 2, 6, ... to upper boundary layer perturbations, numbers 3, 5, ... to internal
perturbations. As A increases the separation of boundary layer perturbations into lower and upper is
smoothed out. This is due to the reduction in the number of internal perturbations and due to changes in the
distribution of the boundary layer perturbations. The eigenvalues c,(a) and cg(o) merge at approximately
the same « as when A =0.15.

The bifurcation of Yn(o) becomes more marked when « > 1,and this is clearly illustrated by Y,(«) and
Y;,¢(@). The most complex behavior of ep(a) occurs for o = 107%-1072, where the asymptotic expressions
(2.1) and (2.2) essentially cannot be used. In the range of "dangerous"™ wave numbers there is a character-
istic maximum of Y{(o) and weaker maxima for Yz,e(oz) and Yq(a).

When A = 2/3 the velocity profile (1.3) loses its characteristic maximum inside the channel. Then the
internal perturbations coincide with the upper boundary layer perturbations. Thus, for A 22/3 the spectrum
of small perturbations only contains boundary layer perturbations. The preponderance of the number of
lower boundary layer perturbations over upper boundary layer perturbations is also lost.

Figure 5 shows the behavior of Y, () for the first four spectral numbers when A=0.75. The separa-
tion of the boundary layer perturbation for this value of A into upper and lower occurs as follows: pertur-
bations withn=1, 4, 5, 8, ... are lower boundary layer perturbations, those with n=2, 3, 6, 7, ... are upper
boundary layer perturbations.

When « is in the range 1074-1072 the functions Xp(a) and Yp(@) intersect, but the various eigenvalues
do not merge. (When o = 1072 the eigenvalues are in the order of increasing ]Ynl as follows: 1, 3,2, 7,5,
6, 4, 8, ... but as « changes this order is destroyed.)

In the above interval Y{(«) has a weak local maximum.

Similar maxima are traced in Figs. 2 and 4, but in these cases they are forerunners of the merging
of the various eigenvalues at the points of discontinuity of en(e). The Yy no longer have local maxima in
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totic region, which are connected with the occurrence of oscillatory
Fig. 5 perturbations when A=1. In the Y plane the separate eigenvalues cor-
responding to the upper and lower boundary layer perturbations, which
merge for A =1, approach each other. The spectrum of small perturbations of Covette flow has been studied
by a number of authors. The case of large Reynolds numbers was studied in detail in [8].

4. We consider the behavior of the perturbations as a function of the Reynolds number. I is easy to
see that Eq. (1.1) is approximated well by the following equation when o? « 1:

¢V = iaR [(u — ¢) oM — u’g] (Jet 4> 09 (4.1)

From this equation we see that the eigenvalues depend only on one parameter «R. Thus, knowing the
numerical results for one R we can a priori draw conclusions about the behavior of cy(a) for other values
of R when o? «1 which is a wider region than that in which (2.1) and (2.2) are valid.

The range of « in which the above considerations hold is very interesting since a significant reorga-
nization of the spectrum by comparison with the asymptotic behavior takes place.

This can be used in numerical calculations at various Reynolds numbers. As an example, Fig, 4 shows
Y,(a) for R = 10% (curve 8) and Y,(a) for R =10°, which illustrate the validity of the approximation of the Orr-
Sommerfeld equation by (4.1) when o? «1.

In the previous section we drew attention to the existence of local maxima for some of the Yp(e). The
greatest interest lies in the behavior of these maxima as R increases since their existence can be linked
to an additional instability. Numerical calculations in which both "continuous motion™ [4] and the approxima-
tion considered here are studied show that the instability of the Couette-Poiseuille flow is only connected
with the first eigenvalue.

The value of A which completely stabilizes the flow was found using continuous motion from the max-
imum of Yy(e). E was A=0.26, which corresponds to the results of [1, 2]. Fig. 4 (curve 9) shows Yy(«x) for
A=0.23, R=10°. For these parameters the flow is not yet unstable,
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